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In this work, it will be shown that the Miesowicz’s viscosity coefficients of the nematic liquid crystals are not
independent, but connected by the effective geometry that the nematic molecules/micelles acquire under random
oscillatory vibration. This result follows from a straightforward application of the Onsager reciprocal relation to
a recent proposed generalisation of the conformal transformation approach of the nematic rheology [1], where it
had been assumed that the nematic dissipative process is not driven by a unique initial isotropic viscosity term, but
by two; a rotational term has been added. As a consequence of the application of the Onsager relation, these two
viscosity terms become related by the effective eccentricity of the nematic grain, leading to a connection between
the Miesowicz’s coefficients. Known experimental data of nematic compounds are used to test this prediction,
resulting in its confirmation, which gives to the conformal transformation approach a predictive vigour that is not
found in any other nematic viscosity theory.
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1. Introduction

In a recent work [1], it has been shown that the Hess
and Balls (HB) approach [2–6] to the nematic viscos-
ity is an incomplete approach; it does not consider
the dissipation through rotation of the nematic mate-
rial. To repair this problem, a new term which takes
care of the internal rotation of the anisotropic liq-
uid, has been added to the HB approach. The main
result obtained with that improvement is that the
HB approach describes a new relation between the
Miesowicz’s coefficients. In this paper we will apply
the Parodi relation to this improved version of the HB
approach, and show that this new relation also reveals
a connection between these viscosity coefficients and
the geometry of the nematic cell.

2. Fundamentals

The anisotropic viscosity of liquid crystals (LCs) is one
of the most challenging properties of these materials
[7]. This property was discovered in 1935 by Miesowicz
[8, 9], when he showed that LCs are non-Newtonian
fluids exhibiting direction-dependent viscosity when
submitted to an external field. Since this time, enor-
mous amounts of experimental and theoretical effort
have been devoted to the subject [2–30], but a sat-
isfactory microscopic theory for it has never been
found [21–23]. The kinetic approach of Doi had been
for some time the most accepted microscopic the-
ory of the nematic viscosity [24–29], but even having
the great merit of producing an expression free of
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adjustable parameters, which captures the essence of
the phenomena, furnishing a semi-microscopic expla-
nation to the origin of their anisotropy, it presents
well-documented disagreements with the experimental
data, being unable to describe the essential aspects of
the phenomenology observed in these systems, espe-
cially when the entire range of the nematic phase is
considered [21–23].

A simple way to understand the origin of the
nematic anisotropies attributes the source of the
anisotropies observed on a macroscopic scale to the
microscopic shape of their constituent molecules; this
idea is the essence of the passage from a microscopic
to a macroscopic order parameter [7], being also the
heart of the HB conformal transformation [2–6]. In the
HB approach it is assumed that if one could imagine
a way by which nematic molecules could be continu-
ously deformed, up to the point in which they become
spherical, it would be possible to observe a corre-
sponding reduction of the macroscopic anisotropies,
until they vanish. Inversely, if the idealised spherical
molecules of an isotropic liquid could be deformed
until they assumed the ellipsoidal form of an idealised
nematic molecule, the macroscopic physical properties
would be transformed into those observed in nematic
liquid crystals (NLCs).

Hess and Balls and co-workers have proposed a
way by which the viscosity of an anisotropic liquid
can be written in terms of the viscosity of an isotropic
liquid. We will use this model below (see Equation
(4)). In order to understand how it works, suppose
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we have a vector �A on which acts the first of the
transformations,

dxi

ds j
= rbδij + (ra − rb)ninj and

dsi

dxj
= 1

rb
δij +

(
1
ra

− 1
rb

)
ninj,

(1)

where �n is the nematic director field defined at each
point. After the application of dxi/ds j over �A, we find

A′
i → Ajdxi/dsj = rani(�A.�n) + rb(�Ai − ni(�A.�n)), (2)

which expands the components of �A parallel to �n by ra,
while the components perpendicular to �n are expanded
by rb. When applied to the vectors covering the sur-
face of a sphere, this transformation would transform
it into an ellipsoid. Of course, dsi/dxj is the inverse
of dxi/dsj. In these equations, {ra, rb} are dependent
on the nematic order parameter S and characterise the
thermalised shape of an ellipsoidal nematic grain [23,
31-34], ra gives the uniaxial axis of the thermalised
grain and rb gives the degenerated axis, in such a way
that the resulting effective eccentricity is given by

e = 1 − r2
b

r2
a

. (3)

As the nematic–isotropic (NI) phase transition is
approached, we have that ra → rb and, accordingly,
e → 0. A study of how these parameters are effectively
dependent on temperature (or order parameter S) can
be found in [23]. In terms of the transformations given
in Equation (1), HB has assumed that, as the oper-
ator dxi/dsj transforms spherically symmetric objects
into ellipsoidal ones, the stress tensor of a liquid with
ellipsoidal particles, given in Equation (7), should be
obtained through the application of Equation (1) [23,
31–34] on the stress tensor of an isotropic liquid, σ I

ij =
η∂ivj , namely,

σij = ds l

dx i

dx j

ds k

(
η∂lvk) , (4)

where ∂ivj is the gradient of the fluid velocity.
Notwithstanding its strong physical appeal

and conceptual simplicity, the HB approach never
explained completely the phenomenology observed in
the LC viscosity. In a previous work [1] we have shown
that Equation (4) does not take into account all of
the degrees of freedom of an anisotropic particle; for
an observer in the laboratory, the velocity �v of an
extended anisotropic rigid body is composed of two
terms,

�v = �vc + �w × �ρ, (5)

the first considering the motion of its centre of mass �vc,
and the second considering the rotation of its internal
points, at the position �ρ, around the centre of mass,
where �w is the instantaneous angular velocity. Both
of these terms produce dissipation and, as the second
term is not present in Equation (4), the HB approach
is incomplete.

We will show now that the absence of this term
provokes another serious problem in this approach: it
hinders the correct use of the Onsager theorem. Let us
see why. According to the Ericksen, Leslie and Parodi
(ELP) approach [10–15], the general expression for the
dissipation occurring in a nematic sample is given by

TṠ =
∫

d3r
{
σijAij + �h. �N

}
, (6)

where Aij = (∂ivj + ∂jvi)/2 and �N = (
.
�n −(�w × �n)) are

the shearing flow and the rotational flow, respectively,
and σij and hi are the corresponding generalised forces.
The Onsager theorem states that, in the linear regime,
when the generalised forces σij and hi are proportional
to the fluxes Aij and �N,

σij = LijklAkl + MijkNk

= α1ninjnknlAkl + α2niNk + α3njNk + α4Aij

+ α5niAjknk + α6njAiknk,

hi = MijkA′
jk + PijNj

= (α2 + α3)nkAik + (α3 − α2)Ni,

(7)

the relation [7] M ′
ijk = Mijk, which is the same as α2 +

α3 = α6 − α5, would be obeyed. That is, there is a
relation M ′

ijk = Mijk connecting the shearing flow and
rotational flow terms of the two generalised forces, σij

and hi. As Equation (4) does not contain this rota-
tional term, the Onsager relation cannot be correctly
applied to it and, consequently, it cannot be in accor-
dance with the fundamentals of the nematic dissipative
theory.

We will see now that the main result of this
paper arises from the solution of this problem; the
application of the Onsager theorem to this improved
version of the HB approach will lead to an up
to now unsuspected geometrical connection between
Miesowicz’s coefficients. Namely, let us assume that
the stress tensor is given by a conformal transforma-
tion with the form

σij = 2
ds l

dx i

dx j

ds k

(
η1Aij + η2Ninj

)
, (8)

where the first term, η1Aij, reproduces the symmetric
part of the former form of the HB approach, and the
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second term, η2Ninj, extends the initial HB hypothe-
ses, considering the rotational dissipative process. η1

and η2 are the viscosities associated with each of these
dissipative terms, respectively.

Using Equation (1), and equating the result with
the stress tensor σij given in Equation (7), we arrive at

α1 = (ra − rb)2

rarb
η1, α2 = ra

rb
η2, α3 = 0,

α4 = η1, α5 = (ra − rb)
rb

η1, α6 = (rb − ra)
ra

η1. (9)

Furthermore, using the definition of Miesowicz’s
coefficients [7], m1 = (α4 + α5 − α2) /2, m2 =
(α3 + α4 + α6) /2, m3 = α4/2, in these equations,
we arrive at

m 1 = ra

2rb
(η1 − η2) ,

m2 = rb

2ra
η1,

m3 = η1

2
, (10)

which leads to

m3

m1

m3

m2
= η1

η1 − η2
. (11)

The relevant aspect of this equation is that it
only depends on the coupling parameters appearing in
Equation (8). Furthermore, it is straightforward to see
that the set of parameters η1 and η2 are not indepen-
dent; the application of the Parodi relation, α2 + α3 =
α6 − α5, in the set of equations given in Equation (9)
gives

η2 = −eη1. (12)

where e has been defined in Equation (3). This leads to

m3

m1

m3

m2
= 1

1 + e
. (13)

This result establishes a connection between the
values of the nematic viscosity coefficients and the
eccentricity of the nematic grain. It has not been
predicted by any other nematic rheological model
and appeared here because we have extended the HB
approach to include a rotational term, which becomes
connected with the eccentricity of the nematic grain
through the application of the Onsager theorem. An
amazing aspect of this equation is that it can be

easily tested experimentally; as the effective eccentric-
ity of the nematic grains does not depend on their
dimensions, but only on their ratios, we expect that
m2

3/(m1m2) would assume approximately the same val-
ues for all nematic compounds. Furthermore, save
for the neighbourhoods of the NI phase transition,
we would have ra >> rb, so we can see that e =
1 − (rb/ra)2 ≈ 1, implying that such a value would
be found around m2

3/(m1m2) ≈ 1/2. Otherwise, as the
NI phase transition is approached the effective forms
of the nematic grains lose their ellipsoidal shape,
becoming more and more spherical, and giving rise
to an increase in the ratio rb/ra, making e → 0, and
m2

3/(m1m2) → 1.

3. Experimental data

In order to verify whether the experimental results
agree with the relation deduced above, we have col-
lected the experimental data from the literature [16–20]
and, in order to have a broad scope of such relations,
only those data encompassing the entire range of the
nematic phase have been considered. For the com-
pounds listed in Figure 1, a uniformised temperature
scale was constructed [21–23, 35, 36] in such a way that
for the nematic–crystalline transition the temperature
T = 0 was attributed, while for the NI transition the
temperature T=1 was attributed. In the figure it can be
observed that the agreement between the predictions
of the theory and the experimental results are excel-
lent. Along the entire range of the nematic phase it
is found that m2

3/(m1m2) ≈ 1/2 and only at the neigh-
bourhoods of the NI phase transition is an increase of
the value of r observed. Surely, in this region it does
not arrive at m2

3/(m1m2) ≈ 1 because the NI phase
transition is discontinuous.

4. Conclusion

We have proposed in this paper the introduction of
two ‘isotropic’ viscosity terms, η1 and η2, in the HB
stress tensor given by Equation (8): one correspond-
ing to the dissipation occurring in the shearing term,
and the other corresponding to the dissipation occur-
ring in the rotational term. This procedure seems to
be a contradiction; there is in fact only one isotropic
viscosity term. Nevertheless, the application of the
Onsager theorem restores the order; it links these dis-
sipative channels revealing that they are not indepen-
dent, but connected by the eccentricity of the nematic
grain, Equation (12) – in the end only one viscosity
term survives. Furthermore, as the effective eccen-
tricity becomes null when the NI phase transition is
approached, Equation (12) shows that in this region
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N4

MBBA

5CBP

EM

PAA

HBAB

Nematic temperature

Figure 1. Parameter r = m2
3/(m1m2) versus the uniformised

nematic temperature scale [21–23, 35, 36]. The use of
the Onsager relation in the stress tensor obtained from
the extended HB approach, proposed in [1], leads to the
prediction that r would assume values around r ≈ 1/2.
Furthermore, as the NI phase transition is approached the
effective anisotropy of the nematic grain is diminished and
the value of r would increase, approaching the value r = 1 .
The experimental data exhibited in this graph [16–20] com-
pletely confirm these predictions. Although the compounds
can be easily recognised by their abbreviated names in the
figure, their scientific names and the authors of the measure-
ments can be found in the quoted references (colour version
online).

the dissipation through this channel disappears, attest-
ing to the confidence of the approach that we have
proposed. Finally, the experimental confirmation of
the relation given in Equation (13) exposes the heart
of the HB approach, which affirms that the differ-
ence between isotropic and anisotropic liquids remains
in the geometry of their constituent grains. As the
relation that we have found explicitly establishes a
geometrical connection between the nematic viscosity
coefficients, it gives to the HB approach a new perspec-
tive in the challenge to understand the physics behind
the nematic viscosity.

Acknowledgements

We are grateful to the Brazilian Agencies CAPES, CNPq,
and Fundação Araucária (PR) for the financial support
given to this work.

References

[1] Simões, M.; Yamaguti, K.; Palangana, A.J. Phys. Rev. E
2009, 80, 061701.

[2] Baalss, D.; Hess, S. Phys. Rev. Lett. 1986, 57, 86–89.
[3] Baalss, D.; Hess, S. Z. Naturforsch., A: Phys. Sci. 1988,

43, 662–665.
[4] Sollich, H.; Baalss, D.; Hess, S. Mol. Cryst. Liq. Cryst.

1989, 168, 189–195.

[5] Hess, S.; Scwarzl, J.F.; Baalss, D. Phys. Condens. Matter
1990, 2, SA279.

[6] Ehrentraut, H.; Hess, S. Phys. Rev. E: Stat., Nonlinear,
Soft Matter Phys. 1995, 51, 2203–2212.

[7] de Gennes, P.G.; Prost, J. The Physics of Liquid Crystals,
2nd ed.; Clarendon Press: Oxford, 1993.

[8] Miesowicz, M. Nature (London, UK) 1935, 136, 261.
[9] Miesowicz, M. Bull. Acad. Pol. A 1936, 228–230.

[10] Ericksen, J.L. Arch. Ratl. Mech. Anal. 1960, 4,
231–237; Ericksen, J.L. Arch. Ratl. Mech. Anal. 1962, 9,
371–378.

[11] Leslie, F.M. Quart. J. Mech. Appl. Math. 1966, 19,
357–370.

[12] Parodi, O. J. Phys. (Paris) 1970, 31, 581–583.
[13] Foster, D.; Lubensky, T.; Martin, P.; Swift, J.; Pershan,

P. Phys. Lett. 1971, 26, 1016–1019.
[14] Martin, P.C.; Parodi, O.; Pershan, P. Phys. Rev. A: At.,

Mol., Opt. Phys. 1972, 6, 2401–2420.
[15] Martin, P.C.; Pershan, P.J.; Swift, J. Phys. Rev. Lett.

1970, 25, 844–848.
[16] Tseng, H.; Finlayson, B.A. Mol. Cryst. Liq. Cryst. 1985,

116, 265–284.
[17] Gahwiller, C.H. Mol. Cryst. Liq. Cryst. 1972, 20,

301–318.
[18] Kneppe, H.; Schneider, F.; Sharma, N.K. Ber.

Bunsenges, Phys. Chem. 1981, 85, 784–795.
[19] Kneppe, H.; Schneider, F.; Sharma, N.K. J. Chem. Phys.

1982, 77, 3203–3209.
[20] Meiboom, S.; Hewitt, R.C. Phys. Rev. Lett. 1973, 30,

261–263.
[21] Simões, M.; Domiciano, S.M. Phys. Rev. E: Stat.,

Nonlinear, Soft Matter Phys. 2002, 66, 061703.
[22] Simões, M.; Domiciano, S.M. Phys. Rev. E: Stat.,

Nonlinear, Soft Matter Phys. 2003, 68, 011705.
[23] Simões, M.; de Campos, A.; Barbato, D. Phys. Rev. E:

Stat., Nonlinear, Soft Matter Phys. 2007, 75, 061710.
[24] Doi, M. J. Pol. Science 1981, 19, 229–235.
[25] Doi, M.; Edwards, S.F. The Theory of Polymer

Dynamics; Oxford Press: New York, 1986.
[26] Doi, M.; Edwards, S.F. J. C. S. Faraday Trans. 1978, 74,

560; Doi, M.; Edwards, S.F. J. C. S. Faraday Trans. 1978,
74, 918–925.

[27] Kuzuu, N.; Doi, M. J. Phys. Soc. Japan 1983, 52, 3486–
3494; Kuzuu, N.; Doi, M. J. Phys. Soc. Japan 1984, 53,
1031–1038.

[28] Osipov, M.A.; Terentjev, E.M. Z. Naturforsch., A: Phys.
Sci. 1989, 44, 785–787; Mol. Cryst. Liq. Cryst. 1990,
198, 429–435; Osipov, M.A.; Terentjev, E.M. Nuovo
Cimento 1990, 12, 1223–1232.

[29] Larson, R.G. The Structure and Rheology of Complex
Fluids; Oxford University Press: Oxford, 1999.

[30] Onsager, L. Phys. Rev. 1931, 37, 405–426; Onsager, L.
Phys. Rev. 1931, 38, 2265–2279.

[31] Simões, M.; Palangana, A.J.; Steudel, A.; Kimura,
N.M.; Gomez, S.L. Phys. Rev. E 2008, 77, 041709.

[32] Simões, M.; Pazetti, M.; Domiciano, S.M.; Oliveira,
D.A.; Palangana, A.J. Phys. Rev. E 2008, 78, 022702.

[33] Simões, M.; de Campos, A. Liq. Cryst. 2007, 34,
719–727.

[34] Simões, M.; de Campos, A. Phys. Lett. A 2007, 370,
173–176.

[35] Simões, M.; Simeão, D.S. Phys. Rev. E: Stat., Nonlinear,
Soft Matter Phys. 2006, 73, 062702.

[36] Simões, M.; Simeão, D.S. Phys. Rev. E: Stat., Nonlinear,
Soft Matter Phys. 2006, 74, 051701.

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
3
:
3
7
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1


